
Unit V 
Branch and Bound 

 

Branch and Bound:  

The Branch and Bound Technique is a problem solving strategy, used for optimization 

problems, where the goal is to minimize a certain value. The optimized solution is obtained by 

means of a state space tree (A state space tree is a tree where the solution is constructed by 

adding elements one by one, starting from the root. This method is best when used for 

combinatorial problems. 

In this technique, the first step is to create a function U (which represents an upper 

bound to the value that node and its children shall achieve), that we intend to minimize. We 

call this function the objective function. Note that the branch and bound technique can also be 

used for maximization problems, since multiplying the objective function by -1 coverts the 

problem to a minimization problem.  

Live Node:  Live node is a node that has been generated but whose children have not yet 

been generated. 

E-Node: E-node is a live node whose children are currently being explored. In other 

words, an E-node is a node currently being expanded. 

Branch-and-bound: Branch-an-bound refers to all state space search methods in which all     

children of an E-node are generated before any other live node becomes E-node. 

  

  

 

  

 

In the above tree when A derives the nodes B C and D. Which node has to be selected 

next to explore ? 

Based on the order in which the tree is to be searched following are different Branch and Bound 

techniques 

 

FIFO Branch and Bound 

LIFO Branch and Bound 

LC Branch and Bound 

 

A 

B C D 



Least Cost (LC) search:   

In both LIFO and FIFO Branch and Bound the selection rule for the next E-node is 

fixed. These selection rule for the next E-node does not give any preference to a node that has 

a very good chance of getting the search to an answer node quickly.  

The search for an answer node can be speeded by using an “intelligent” ranking 

function c(x) for live nodes. The next E-node is selected on the basis of this ranking function. 

The node x is assigned a rank using:  

c ( x ) = f(h(x)) + g ( x ) where, c ( x ) is the cost of x.   

h(x) is the cost of reaching x from the root and  

f(.) is any non-decreasing function.  

g ( x ) is an estimate of the additional effort needed to reach an answer node from x.   

A search strategy that uses a cost function c ( x ) = f(h(x) + g ( x ) to select the next E-node 

would always choose for its next E-node a live node with least c (x) is called a LC–search 

(Least Cost search) 

Control abstraction for LC Search:  

Let t be a state space tree and c(x) a cost function for the nodes in t. If x is a node in t, 

then c(x) is the minimum cost of any answer node in the subtree with root x.  

LC-search uses c (x) to find an answer node. The algorithm uses two functions Least() 

and Add() to delete and add a live node from or to the list of live nodes, respectively. Least() 

finds a live node with least c(). This node is deleted from the list of live nodes and returned. 

Algorithm LCSearch outputs the path from the answer node it finds to the root node t. 

This is easy to do if with each node x that becomes live, we associate a field parent which gives 

the parent of node x. When the answer node g is found, the path from g to t can be determined 

by following a sequence of parent values starting from the current E-node (which is the parent 

of g) and ending at node t. 

 



LC Search for 15 Puzzle Problem: 
The 15 puzzle consists of 15 squares numbered from 1 to 15 that are placed in a box leaving one 

position out of the 16 empty. The goal is to reposition the squares by sliding empty once at a time into 

the configuration shown above.  

 

 

 

 

 Problem State Goal State 
 

A depth first state space tree can be used to to find the solution. when the next moves are 

attempted in the order: move the empty space up, right, down and left. The search of the 

state space tree continues.  

 

We associate a cost c(x) with each node x in the state space tree.  

 

c(x) is as follows: 

 

 C(x) = f(h(x)) + g(x)  

 

where, f(h(x)) is the length of the path from the root to node x and 

 
g(x) is an estimate of the length of a shortest path from x to a goal node in  
 
the subtree with root  x.  

Here, g(x) is the number of nonblank tiles not in 

their goal position. 
 

 

Solve the following 15 Puzzle problem 

 

 

 

 

 

 

 

 

 

 

The LC-search, begin with the root as the E-node and generate all child nodes 2, 3, 4 

and 5 as shown in below figure.  

 

   C(x) = f(h(x)) + g(x)  

 

When tile moved towards Up, Cost (2) = 1 + 4 = 5 

When tile moved towards right, Cost (3) = 1 + 4 = 5 

When tile moved towards down, (4) = 1 + 2 = 5 

When tile moved towards left (5) = 1 + 4 = 4 

1 2 3 4 

5 6  8 

9 10 7 11 

13 14 15 12 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15  

1 2 3 4 

5 6  8 

9 10 7 11 

13 14 15 12 



The next node to become the E-node is a live node with least cost 

Node 4 becomes the E-node and its children are generated.  

 

 

 

 
 

 

The possible moves at E Node 4 are right, down and left only 

When tile moved towards right, Cost (6) = 2 + 1 = 3 

When tile moved towards down, (7) = 2 + 3 = 5 

When tile moved towards left (8) = 2 + 3 = 5 

 

Now E-Node will be node 6 having least cost 

 

New nodes 9 and 10 are derived in which the 10 is the goal state. 

 

 

 

 



FIFO Branch and Bound 

In The First-In-First-Out approach we follow the queue mechanism to create the state-

space tree which is similar to breadth first search. the elements at a particular level are all 

searched, and then the elements of the next level are searched. i.e., if Nodes at level 1 are 

explored from left to right then only we move to level 2 and repeat same order. 

  

 

  

 

 

 

Here once the root node A is explored, it generates the child nodes called to be B, C 

and D. In FIFO approach we explore the node which reached first into the queue i.e., here B 

will be selected when it derives new child nodes they will be inserted into the the queue 

  

 

  

 

 

 

 

 

As B is explored now next node in queue is C, and it will be explored 

  

 

  

 

 

 

 

B C D  

B C D E F  

B C D E F G H  

A 

B C D 

A 

B C D 

F E 

A 

B C D 

F E G H 



LIFO Branch and Bound : 

In LIFO Branch and Bound, Stack mechanism is used to explore the nodes i.e., the last 

inserted child node will be explored first.  

 

LC Branch and Bound : 

In Least Cost Branch and Bound approach, Once the root node is explored and its 

child nodes are maintained in a list(unlike queue) as live nodes. Now cost of each live node 

will be calculated which ever node has the least cost that node will be explored first(its child 

nodes will be inserted into existing list) the same process will be repeated until a feasible 

solution is obtained. 

  

 

  

 

 

Live Nodes 

 

Now from the lives nodes B, C and D. say Node C has the least cost. Then node C 

will be explored and its child nodes will be inserted into the list of existing live nodes and C 

will be called as  dead node. 

  

 

  

 

 

 

 

 

As C is already explored. now whichever node has least cost among all the live nodes 

i.e., B, D, E and F that node will be selected to explore. Let say F has least cost among them 

then explore F and add its child nodes to list again, and process repeats until feasible solution 

is obtained. 

 

B C D  

B C D E F  

A 

B C D 

A 

B C D 

F E 



  

 

  

 

 

 

 

 

 

 

 

0/1 Knapsack using LC Branch and Bound 

The 0/1 problem is a maximization problem, whereas the Branch and Bound method 

is for minimization problems. Hence, the values will be multiplied by -1 so that this problem 

gets converted into a minimization problem.  

the procedure to solve the problem is as follows are: 

• Set initial global upper bound G = ∞ 

• Calculate the cost function c(x) and the Upper bound u(x) for each node. 

 Here, the (i + 1)th level indicates whether the ith object is to be included or not. 

• If the u(x) value of any node is smaller than G, then set G = u(x) 

• If The cost function c(x) for a node is greater than G, then the node need not be 

explored further. Hence, we can kill this node.  

• The next node to be checked after reaching all nodes in a particular level will be the 

one with the least cost function value among the unexplored nodes. 

• While including an object, one needs to check whether the adding the object crossed 

the Maximum knapsack size. If it crosses when should not consider that path. 

 

 

 

B C D E F G H  

A 

B C D 

H G 

E F 



Solve the following 0/1 knapsack problem using LCBB, where n =4,  

profits = {10, 10, 12, 18}, weights = {2, 4, 6, 9} and M = 15. 

 

Negate the profits so problem turns to minimization from maximization 

Profits = {-10,-10,-12,-18} 

Initially Set global upper bound G = ∞ 

Calculating U(x) for first node 

Place first item in knapsack. Remaining weight of knapsack is 15 – 2 = 13.  

Place next item w2 in knapsack and the remaining weight of knapsack is 13 – 4 = 9. 

Place next item w3 in knapsack then the remaining weight of knapsack is 9 – 6 = 3.  

No fractions are allowed in calculation of upper bound so w4 cannot be placed in 

knapsack.  

U(x) = P1 + P2 + P3 = -10 - 10 - 12  

Also set G = u(x) = - 32  

Calculating Cost c(x) 

To calculate cost we should place w4 in knapsack, since fractions are allowed in 

calculation of cost.  

C(x)= -10 - 10 - 12 + ( (3/9) X -18) = -32 - 6 = -38 

 

 

Now we will calculate upper bound and cost for nodes 2, 3.  

For node 2, x1= 1, means we must place first item in the knapsack.  

U(x) = -10 - 10 - 12 = -32,  

C(x) = -10 - 10 - 12 + ( (3/9) X -18) = -32 - 6 = -38  

For node 3, x1 = 0, means we should not place first item in the knapsack.  

U(x) = -10 - 12 = -22,  

C(x) = -10 - 12 + (5/9) x -18 = -10 - 12 - 10 = -32 

1 
G = ∞ -32 U = -32 

C = -38 

2 3 

X1 = 1 X1 = 0 



 

 

Now among Nodes 2 and 3, node 2 has least cost, so explore node 2 

Calculate upper bound and cost for the child nodes 

 

Now Explore Node 4 which has least cost among the live nodes 3,4,5 and calculate u 

and c value for its child nodes 

 

 

 

1 
G =  -32 U = -32 

C = -38 

2 3 

X1 = 1 X1 = 0 

U = -32 

C = -38 
U = -22 

C = -32 

1 
G =  -32 U = -32 

C = -38 

2 3 

X1 = 1 X1 = 0 

U = -32 

C = -38 
U = -22 

C = -32 

4 5 

X2 = 1 X2 = 0 

U = -32 

C = -38 
U = -22 

C = -36 

1 
G =  -32 -38 U = -32 

C = -38 

2 3 

X1 = 1 X1 = 0 

U = -32 

C = -38 
U = -22 

C = -32 

4 5 

X2 = 1 X2 = 0 

U = -32 

C = -38 
U = -22 

C = -36 

6 7 

X3 = 1 X3 = 0 

U = -32 

C = -38 
U = -38 

C = -38 



For node 7, upper bound is smaller than Global upper bound G, So set G = -38 

Now Cost of nodes 3 and 5 are greater than G, So kill the nodes 3 and 5 

If we explore node 6 choosing x4 = 1, it is not a valid solution because the weight of all 4 

objects together(21) will be greater than knapsack weight(15) 

Now explore node 7 and calculate upper bound and cost of child nodes 

   

 

 

 

 

 

 

 

 

 

1 
G =   -38 U = -32 

C = -38 

2 3 

X1 = 1 X1 = 0 

U = -32 

C = -38 
U = -22 

C = -32 

4 5 

X2 = 1 X2 = 0 

U = -32 

C = -38 
U = -22 

C = -36 

6 7 

X3 = 1 X3 = 0 

U = -32 

C = -38 

U = -38 

C = -38 

9 10 

X4 = 1 X4 = 0 

8 

X4 = 0 
X4 = 1 

U = -32 

C = -32 
U = -38 

C = -38 

U = -20 

C = -20 

Space tree is drawn for all four objects and 

Node 9 having least cost is the solution node. 

Solution = {X1 = 1, X2 = 1, X3 = 0, X4 = 1} 

 = {1, 1, 0, 1} 

Profit = 38 
Connot 

include 

4th object 

X 



For 0/1 Knapsack using FIFO Branch and Bound  

unlike LCBB the nodes will be explored in Queue mechanism. The first arrived live node will 

be explored first instead of node having least cost. 

 

Here the live nodes in queue are 3  4  5.  

Where 3 will be explored before than 4 and 5 

 

Now Among the live nodes 4, 5, 6 and 7 

4 will be explored first and calculate the cost and upper bound for those nodes   

 

1 
G = ∞ -32 U = -32 

C = -38 

2 3 

X1 = 1 X1 = 0 

U = -32 

C = -38 
U = -22 

C = -32 

4 5 

X2 = 1 X2 = 0 

U = -32 

C = -38 
U = -22 

C = -36 

1 
G = -32 

U = -32 

C = -38 

2 3 

X1 = 1 
X1 = 0 

U = -32 

C = -38 
U = -22 

C = -32 

4 5 

X2 = 1 X2 = 0 

U = -32 

C = -38 
U = -22 

C = -36 6 7 

X2 = 1 X2 = 0 

U = -30 

C = -30 

U = -22 

C = -32 



 

 

Travelling Salesman Problem 

Given a set of cities and distances between every pair of cities, the problem is to 

find the shortest possible route that visits every city exactly once and returns to the starting 

point.  

 

If A is the starting city, then a TSP solution for the graph is- 

A → B → D → C → A 

Cost of the tour  = 10 + 25 + 30 + 15 

1 
G = -32 -38 

U = -32 

C = -38 

2 3 

X1 = 1 
X1 = 0 

U = -32 

C = -38 
U = -22 

C = -32 

4 5 

X2 = 1 X2 = 0 

U = -32 

C = -38 
U = -22 

C = -36 6 7 

X2 = 1 X2 = 0 

U = -30 

C = -30 

U = -22 

C = -32 

8 9 

X3 = 1 X3 = 0 

U = -32 

C = -38 

U = -38 

C = -38 

X X 

X 

10 

X4 = 0 
X4 = 1 

U = -32 

C = -32 
Connot 

include 

4
th

 object 

X 11 12 

X4 = 1 X4 = 0 

U = -38 

C = -38 

U = -20 

C = -20 

Space tree is drawn for all four objects and Node 11 

having least cost is the solution node. 

Solution = {X1 = 1, X2 = 1, X3 = 0, X4 = 1} 

 = {1, 1, 0, 1} 

Profit = 38 



 

 

 

 



Travelling Salesperson Problem 

Solve the Travelling Salesperson Problem given the adjacency Matrix 

 

 

A is the Root Node  

Calculate reduction Cost = Row Reduction + column Reduction 

  

Row Reduction 

 

  

 

 

  Row Reduction = 4 + 5+ 6 + 2 = 17   

 

 

Column Reduction 

 

  

 

 

  Column Reduction = 1 

  Reduction Cost = 17 + 1 = 18 

             C(1) = 18 

 

 

 

  

 C(2) =    C(3) =   C(4) =   

 A B C D 

A ∞ 4 12 7 

B 5 ∞ ∞ 18 

C 11 ∞ ∞ 6 

D 10 2 3 ∞ 

 A B C D 

A ∞ 0 8 3 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 1 ∞ 

 A B C D 

A ∞ 4 12 7 

B 5 ∞ ∞ 18 

  C 11 ∞ ∞ 6 

D 10 2 3 ∞ 

 A B C D 

A ∞ 0 7 3 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 0 ∞ 

 A B C D 

A ∞ 0 8 3 

B 0 ∞ ∞ 13 

  C 5 ∞ ∞ 0 

D 8 0 1 ∞ 

A 

B C D 



A - B 

Parent Node is A, its Reduced Matrix is  

 

  

 

 

 

Step 1 : Set Outdegree of Vertex A to ∞ 

 

 

 

 

Step 2 : Set Indegree of Vertex B to ∞ 

   

 

 

 

 

Step 3 : set B -> A as ∞ 

  

 

 

 

 

 

 

  

 A B C D 

A ∞ 0 7 3 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 ∞ 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 ∞ 0 ∞ 



Row Reduction 

  

   

 

 

 

  Row Reduction = 13   

 

 

Column Reduction 

 

  

 

 

  Column Reduction = 5 

  Reduction Cost = 13 + 5 = 18 

 

 

Cost = G[A,B]     +    Cost(1)   +   Reduction Cost = 0 + 18 + 18 = 36 

         (Parent A)      (Parent A) 

             C(1) = 18 

 

 

 

  

C(2) = 36  C(3) =   C(4) =   

 

 

 

  

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 13 

  C 5 ∞ ∞ 0 

D 8 ∞ 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C 5 ∞ ∞ 0 

D 8 ∞ 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C 0 ∞ ∞ 0 

D 3 ∞ 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

  C 5 ∞ ∞ 0 

D 8 ∞ 0 ∞ 

A 

B C D 



A - C 

Parent Node is A, its Reduced Matrix is  

 

  

 

 

 

Step 1 : Set Outdegree of Vertex A to ∞ 

 

 

 

 

Step 2 : Set Indegree of Vertex C to ∞ 

   

 

 

 

 

Step 3 : set C -> A as ∞ 

  

 

 

 

 

 

 

 

 A B C D 

A ∞ 0 7 3 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C ∞ ∞ ∞ 0 

D 8 0 ∞ ∞ 



  

Row Reduction 

  

   

 

 

 

  Row Reduction = 0   

 

 

Column Reduction 

 

  

 

 

  Column Reduction = 0 

  Reduction Cost = 0 + 0 =0  

 

 

Cost = G[A,C]     +    Cost(1)   +   Reduction Cost = 7 + 18 + 0 = 25 

         (Parent A)      (Parent A) 

             C(1) = 18 

 

 

 

  

C(2) = 36  C(3) =25  C(4) =   

 

 

 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

  C ∞ ∞ ∞ 0 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C ∞ ∞ ∞ 0 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C ∞ ∞ ∞ 0 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

  C ∞ ∞ ∞ 0 

D 8 0 ∞ ∞ 

A 

B C D 



A - D 

Parent Node is A, its Reduced Matrix is  

 

  

 

 

 

Step 1 : Set Outdegree of Vertex A to ∞ 

 

 

 

 

Step 2 : Set Indegree of Vertex D to ∞ 

   

 

 

 

 

Step 3 : set D -> A as ∞ 

  

 

 

 

 

 

 

 

 A B C D 

A ∞ 0 7 3 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C 5 ∞ ∞ 0 

D 8 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C 5 ∞ ∞ ∞ 

D 8 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C 5 ∞ ∞ ∞ 

D ∞ 0 0 ∞ 



  

Row Reduction 

  

   

 

 

 

  Row Reduction = 5    

 

 

Column Reduction 

 

  

 

 

  Column Reduction = 0 

  Reduction Cost = 5 + 0 =0  

 

 

Cost = G[A,D]     +    Cost(1)   +   Reduction Cost = 3 + 18 + 5 = 26 

         (Parent A)      (Parent A) 

             C(1) = 18 

 

 

 

  

C(2) = 36  C(3) =25  C(4) =  26 

                                            Node with Least Cost 

 

 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

  C 5 ∞ ∞ ∞ 

D ∞ 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C 0 ∞ ∞ ∞ 

D ∞ 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C 0 ∞ ∞ ∞ 

D ∞ 0 0 ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

  C 0 ∞ ∞ ∞ 

D ∞ 0 0 ∞ 

A 

B C D 



A – C -B 

Parent Node is A-C, its Reduced Matrix is  

 

  

 

 

 

Step 1 : Set Outdegree of Vertex C to ∞ 

 

 

 

 

Step 2 : Set Indegree of Vertex B to ∞ 

   

 

 

 

 

Step 3 : set B -> A as ∞ 

  

 

 

 

 

 

 

 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C ∞ ∞ ∞ 0 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C ∞ ∞ ∞ ∞ 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C ∞ ∞ ∞ ∞ 

D 8 ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 13 

C ∞ ∞ ∞ ∞ 

D 8 ∞ ∞ ∞ 



  

Row Reduction 

  

   

 

 

 

  Row Reduction = 13+8   

 

 

Column Reduction 

 

  

 

 

  Column Reduction =0 

  Reduction Cost = 21 + 0 =21  

 

 

Cost = G[C,B]     +    Cost(3)   +   Reduction Cost = ∞ + 25 + 21 = ∞ 

         (Parent A)      (Parent A) 

             C(1) = 18 

 

 

 

  

C(2) = 36                                          C(3) =25   C(4) =   

 

                                   C(5) = ∞ 

 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 13 

  C ∞ ∞ ∞ ∞ 

D 8 ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D 0 ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D 0 ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

  C ∞ ∞ ∞ ∞ 

D 8 ∞ ∞ ∞ 

A 

B C D 

B 



A – C -D 

Parent Node is A-C, its Reduced Matrix is  

 

  

 

 

 

Step 1 : Set Outdegree of Vertex C to ∞ 

 

 

 

 

Step 2 : Set Indegree of Vertex D to ∞ 

   

 

 

 

 

Step 3 : set D -> A as ∞ 

  

 

 

 

 

 

 

 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C ∞ ∞ ∞ 0 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ 13 

C ∞ ∞ ∞ ∞ 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C ∞ ∞ ∞ ∞ 

D 8 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C ∞ ∞ ∞ ∞ 

D ∞ 0 ∞ ∞ 



  

Row Reduction 

  

   

 

 

 

  Row Reduction =0    

 

 

Column Reduction 

 

  

 

 

  Column Reduction =0 

  Reduction Cost = 0 + 0 =0  

 

 

Cost = G[C,D]     +    Cost(3)   +   Reduction Cost = 0+ 25 + 0 = 0 

         (Parent )      (Parent ) 

             C(1) = 18 

 

 

 

  

C(2) = 36                                          C(3) =25   C(4) =  26 

 

                                   C(5) = ∞  C(6) = 25 

 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

  C ∞ ∞ ∞ ∞ 

D ∞ 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B 0 ∞ ∞ ∞ 

C ∞ ∞ ∞ ∞ 

D ∞ 0 ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D 8 ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

  C ∞ ∞ ∞ ∞ 

D 8 ∞ ∞ ∞ 

A 

B C D 

B D 



A – C -D - B 

Parent Node is A-C-D, its Reduced Matrix is  

 

  

 

 

 

Step 1 : Set Outdegree of Vertex D to ∞ 

 

 

 

 

Step 2 : Set Indegree of Vertex B to ∞ 

   

 

 

 

 

Step 3 : set B -> A as ∞ 

  

 

 

 

 

 

 

 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D 8 ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D ∞ ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D ∞ ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D ∞ ∞ ∞ ∞ 



  

Row Reduction 

  

   

 

 

 

  Row Reduction =0    

 

 

Column Reduction 

 

  

 

 

  Column Reduction =0 

  Reduction Cost = 0 + 0 =0  

 

Cost = G[D,B]     +    Cost(5)   +   Reduction Cost = 0+ 25 + 0 = 0 

         (Parent )      (Parent ) 

             C(1) = 18 

 

 

 

                 C(2) = 36                                C(3) =25             C(4) =  26 

 

                                   C(5) = ∞  C(6) = 25 

 

 

 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

  C ∞ ∞ ∞ ∞ 

D ∞ ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D ∞ ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

C ∞ ∞ ∞ ∞ 

D ∞ ∞ ∞ ∞ 

 A B C D 

A ∞ ∞ ∞ ∞ 

B ∞ ∞ ∞ 0 

  C ∞ ∞ ∞ ∞ 

D ∞ ∞ ∞ ∞ 

A 

B C D 

B D 

B C(7) = 25 

Path = A – C – D – B – A  

Cost = 12 + 6 + 2 + 5 = 25 

No other nodes has the cost less than 

cost of node B, so no need to explore 

any other node 



P, NP, NP-Complete and NP-Hard 
 

class P - Problems 

• The class P consists of those problems that can be solved and verified in polynomial 

time. 

• More specifically, they are problems that can be solved in time O(nk) for some 

constant k,  

• For P Class problems, Deterministic algorithms can be written  

• P Problems are subset of NP Problems 

• If problems belongs to class P, it is easy to find the solution  

Example  

Linear search, Binary Search, matrix multiplication 

 

NP - Non-Deterministic polynomial time 

• Solution to NP Problems cannot be obtained in polynomial time, but if the solution is 

given it can be verified in polynomial time. 

• It is the collection of decision problems that can be solved by a non-deterministic 

algorithm in polynomial time. 

• NP problems are super set of P Problems 

Example 

 Travelling Salesperson, knapsack problem 

 

 

 

 

 

 

 

 

 

 

 

P NP 



Deterministic Algorithms : 

    For the Deterministic algorithms, given a particular input it will always produce the same 

output. In Deterministic algorithm the path of execution for algorithm is same in every 

execution 

Non-Deterministic Algorithms : 

   In Non-deterministic algorithms, the path of execution is not same in every execution. The 

outcomes are in consistent 

 

Reducibility : Let L1 and L2 be two problems. Problem L1 reduces to L2 also written as L1 

∞ L2. It means if we have a polynomial time algorithm for L2, then we can solve L1 in 

polynomial time. Here ∞ is transitive relation 

              If    L1 ∞ L2        and        L2 ∞ L3        then       L1 ∞ L3 

 

Satisfiability – Satisfiability is problem where given a boolean expression, determining if 

there exists a truth assignment to its variables  

 

 

 

 

 



NP – Hard : 

    A problem L is Np-hard if and only if satisfiability reduces to L.  

To show that a problem L2 is NP-hard, it is adequate to show L1 ∞ L2, where L1 is some 

problem already known to be NP-hard. 

Example  

    Halting problem, vertex cover problem. 

 

NP – Complete :  

         A problem is NP-complete if it is both NP and NP-hard. 

        If one could solve an NP-complete problem in polynomial time, then one could also 

solve any NP problem in polynomial time. For an NP-Complete problem there should be a 

non deterministic algorithm.  

Example  

satisfiability problems, clique problem. 

 

 

 

    

 

P 

NP 

NP - Hard 

NP - Complete 


