
UNIT III Dynamic Programming 
 

Dynamic Programming(DP) :  

Dynamic Programming is a technique where, if any problem can be divided into 

subproblems, which in turn are divided into smaller subproblems, and if there are overlapping 

among these subproblems, then the solutions to these subproblems can be saved for future 

reference. In this way, efficiency of the CPU can be enhanced. 

Dynamic Programming = Memorization/Memoization + Recursion 

for better understanding of Dynamic Programming, let’s revisit the recursion and then try to 

understand how DP works. 

Recursion : Recursion is a process in which the function calls itself in order to solve the main 

problem 

Example : Fibonacci series 

 

#include<stdio.h> 
 
void main() { 
    printf("The Fibonacci number for index 6 = %d",fib(6)); 
} 
int fib (int n) { 
        if (n < 2) 
            return 1; 
        return fib(n-1) + fib(n-2); 
} 
 

 
 

In the above problem of solving fib(6), it was divided into sub problems fib(5) and fib(4), 

fib(5) is again divided into fib(4) and fib(3) and so on..  



we can see that the same subproblem fib(4) is executed for more than one time making 

inefficient utilization of CPU. 

 

‘If the sub problems are being executed more than one time why don’t we store the result 

somewhere on first computation itself and retrieve the same result when required’ this is how 

the Dynamic programming works  

DP is generally used to solve problems which involve the following steps 

• Split the problem into multiple small subproblems and store results of the sub 

problem. 

• While solving each subproblem, check if the same problem was solved earlier. If 

yes, then take the stored result instead of solving the same subproblem again. 

• Merge the subproblem results into the final result. 

As we are storing the answer of every subproblem for future use, it requires extra memory to 

save the data. This process is called as memoization / memorization. 

 

include<stdio.h> 
void main() { 
    printf("The Fibonacci number for index 6 = %d",fib(6)); 
} 
int fib (int n) { 
        arrFib[100] = {0}; 
        arrFib[0] = 1; 
        arrFib[1] = 1; 
        for (int i = 2; i<n; i++) 
           arrFib[i] = arrFib[i-1] + arrFib[i-2]; 
       return arrFib[n-1] 
    } 
 
 

Instead of calling the functions recursively again and again, we are calculating the value of 

the Fibonacci series and storing it in an array. 

 

arrFib[0] arrFib[1] arrFib[2] arrFib[3] arrFib[4] arrFib[5] ……… arrFib[n] 
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Single Source Shortest paths General Weights / Single Source Shortest path 

using Dynamic Programming / Single Source Shortest path using Bellman 

Ford Algorithm : 

Like Dijkstra's shortest path algorithm, the Bellman-Ford algorithm is also used to find the 

shortest path from given source vertex to all other vertices in the graph G, 

with V vertices and E edges.. Though it is slower than Dijkstra's algorithm, Bellman-Ford 

is capable of handling graphs that contain negative edge weights.  

Note : if there exists a negative cycle in the graph, then there is no shortest path 

 

The pseudo-code for the Bellman-Ford algorithm 

 for v in V: 

      distance[v]= infinity 

 source.distance = 0 

 for i from 1 to |V| - 1: 

      for (u, v) in E: 

          relax(u, v) 

 

The first for loop sets the distance to each vertex in the graph to infinity. This is later 
changed for the source vertex to equal zero.  

The next for loop is used to relax each edge (u, v) in E. This process is done |V| -1 times 

 

relax(u, v): 

    if distance[v]> distance[u]+ cost(u, v): 

        distance[v] = distance[u] + cost(u, v) 

 

Relaxation – Relaxing an Edge (u,v), d[u],d[v] are distance from source vertex to u and v, 

c(u,v) represents cost of edge between u and v 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Step 1 : List all the edges  

                 (1,2). (1,3), (2,4,), (3,2,), (3,4), (3,5), (4,5) 

Step 2 : Initialize the distance for source vertex to 0 and other vertices to ∞ (infinite) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3 : Relax all the edges for V-1 times  

i) Relaxing edges for 1st time 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Similarly relax all the edges then updated distances will be  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii) Relax all the edges for second time on previously updated distances 

Edges (1,2). (1,3), (2,4,), (3,2,), (3,4), (3,5), (4,5) 

  For first edge (1,2) 

   d[1] = 0 and d[2] = 3 

   d[2] > d[1] + c(1,2) 

        3 > 0+6      is false so no need to update distance of d[2] 



 Similarly in edge (1,3) d[3] will not be updated 

 Edge (2,4)       d[2] = 3 and d[4] = 2 

   d[3] > d[2] + c(2.3) 

      5   > 3 – 1    

   5   > 2     is true so update d[3] = 2 

 In Edges (3,2) (3,4) and (3,5) distances will not be updated 

 In last edge (4,5)  d[4] = 2 and d[5] =8 

  d[5]   > d[4] + c(4,5)  

     8     > 2 + 3 

     8     > 5     is true so update d[5] = 5 

All the edges were relaxed, updated graph and distances will be 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



iii) Now Relaxing all the edges for third time  

 

Edges (1,2). (1,3), (2,4,), (3,2,), (3,4), (3,5), (4,5) 

 

No updates were found the distances will be same as previous iteration 

 

  

 

 

 

 

 

 

 

 

 

iv) Now Relaxing all the edges for fourth time  

 

Edges (1,2). (1,3), (2,4,), (3,2,), (3,4), (3,5), (4,5) 

 

No updates were found the distances will be same as previous iteration 

 

  

 

 

 

 

 

 

 

 

 

 

All the edges in Graph were relaxed for 4 time i.e., V-1 times where no of vertices V = 5 the 

distances obtained in V-1th were the final shortest path distances from source vertex 0 to all 

other vertices 



Optimal Binary Search Trees(OBST) :  An optimal binary search tree is a 

BST, which has minimal cost of finding each node. A Binary Search Tree in which placing 

the most frequently used data in the root and closer to the root element, while placing the 

least frequently used data near leaves and in leaves to improve the search time is known to 

be OBST. 

Construct all possible Binary search trees for following elements  

10, 20, 30  

No of possible BST will be 
2𝑛𝑐𝑛

𝑛+1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here T5 will be optimal Binary Search Tree, when no of Search operations are almost same 

for all the keys 

Observe below searching scenario for keys 

 Element   10 20 30 

 Frequency   5 40 100 

of search 

 



For the above case, which tree will perform better  

T1 = 1*5 + 2* 40 +  3*100 = 385 

T2 = 1*5 + 2* 100 +  3*40 = 325 

T3 = 1*100 + 2* 40 +  3*5 = 195 

T4 = 1*100 + 2*5 +  3*40  = 230 

T5 = 1*40 + 2* 5 +  2*100 = 290  

 

 

 

 

 

 

 

 

 

 

Constructing All possible BST will be give us 
2𝑛𝑐𝑛

𝑛+1
  

It will take huge time to construct all BST and then finding optimal one.  

We can know the Optimal Binary Search Tree using the below procedure 

➢ Here we assume, the probability of accessing a key Ki is pi. 

➢  Some dummy keys (d0, d1, d2, ... dn) are added as some searches may be performed 

for the values which are not present in the Key set K.  

➢ We assume, for each dummy key di probability of access is qi. 

➢ W(i, j) denotes weight which can be defined using the following formula:  

  W (i, j) = P (j) + Q (j) + w (i, j-1) 

➢ C(i, j) denotes the cost matrix for OBST C(i, j) can be defined recursively, in the 

following manner:  

C (i, j) = min {C (i, K-1) + C (K, j)} + w (i, j)  
i<k<=j 

 



➢ R(i,j ) = k value chosen among C(i, j) 

➢ Initially C (i, i) = 0 and w (i, i) = Q (i) for 0 < i < n. 

 

 

EXAMPLE Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3, 3, 1, 1) and  

Q (0: 4) = (2, 3, 1, 1, 1) 

 
Solution: 

 

Table for recording W (i, j), C (i, j) and R (i, j): 

 

 Column 

Row 
0 1 2 3 4 

j-i = 0 0 W0,0 = 2 

C0,0 = 0 

R0,0 =0 

W1,1 = 3 

C1,1 = 0 

R1,1 =0 

W2,2 = 1 

C2,2 = 0 

R2,2 =0 

W3,3 = 1 

C3,3 = 0 

R3,3 =0 

W4,4 = 1 

C4,4 = 0 

R4,4 =0 

j-i = 1 1 W0,1 = 8 

C0,1 = 8 

R0,1 =1 

W1,2 = 7 

C1,2 = 7 

R1,2 =2 

W2,3 = 3 

C2,3 = 3 

R2,3 =3 

W3,4 = 3 

C3,4 = 3 

R3,4 =4 

 

j-i = 2 2 W0,2 = 12 

C0,2 = 19 

R0,2 =1 

W1,3 = 9 

C1,3 = 12 

R1,3 =2 

W2,4 = 5 

C2,4 = 8 

R2,4 =3 

 

j-i = 3 3 W0,3 = 14 

C0,3 = 25 

R0,3 =2 

W1,4 = 11 

C1,4 = 19 

R1,4 =2 

 

j-i = 4 4 W0,4 = 16 

C0,4 = 32 

R0,4 =2 

 

 

This computation is carried out row-wise from row 0 to row 4.  

Initially, W (i, i) = Q(i) and C (i, i) = 0 and R (i, i) = 0 

 

 

j-i = 0 

W0,0 = 2 

C0,0 = 0 

R0,0 =0 

W1,1 = 3 

C1,1 = 0 

R1,1 =0 

W2,2 = 1 

C2,2 = 0 

R2,2 =0 

W3,3 = 1 

C3,3 = 0 

R3,3 =0 

W4,4 = 1 

C4,4 = 0 

R4,4 =0 

 

 

Solving for C (0, n): 

 

FIRST ROW, computing all C (i, j) such that j - i = 1  

 Possible elements are (0,1), (1,2), (2,3) and (3,4) 

 

 



 

j-i = 1 

W0,1 = 8 

C0,1 = 8 

R0,1 =1 

W1,2 = 7 

C1,2 = 7 

R1,2 =2 

W2,3 = 3 

C2,3 = 3 

R2,3 =3 

W3,4 = 3 

C3,4 = 3 

R3,4 =4 

 

 

Start with i = 0 and j = 1, Min i < k ≤ J. 

the possible value for     k = 1 
 

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 = 8 

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 8 

R (0, 1) = 1 (value of 'K' that is minimum in the above equation). 

 

with i = 1 and j = 2, Min i < k ≤ J the possible value for     k = 2 

W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 = 7 

C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 7 

R (1, 2) = 2 

with i = 2 and j = 3, Min i < k ≤ J the possible value for     k = 3 

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3 
C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3 

R (2, 3) = 3 

 

with i = 3 and j = 4, Min i < k ≤ J the possible value for     k = 4 

(3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3 
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3 
R (3, 4) = 4 

 

Second, Computing all C (i, j) such that j - i = 2 

 

j-i = 2 W0,2 = 12 

C0,2 = 19 

R0,2 =1 

W1,3 = 9 

C1,3 = 12 

R1,3 =2 

W2,4 = 5 

C2,4 = 8 

R2,4 =3 

 

 

Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k = 1 and 2. 
 

W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 = 12 
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))} 

= 12 + min {(0 + 7, 8 + 0)} = 19 
R (0, 2) = 1 

 

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3. 

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 = 9 

C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]} 

= W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 = 12 

R (1, 3) = 2 

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4. 

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5 

C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)] 



= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8 

R (2, 4) = 3 
 

 

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0, 1; i 

< k ≤ J.  

 

 

j-i = 3 

W0,3 = 14 

C0,3 = 25 

R0,3 =2 

W1,4 = 11 

C1,4 = 19 

R1,4 =2 

 

 

Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 and 3. 
 

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14 
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)], 

[C (0, 2) + C (3, 3)]} 

= 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 = 25 

R (0, 3) = 2 

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4. W 

(1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 = 11 
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)], 

[C (1, 3) + C (4, 4)]} 

= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 = 19 

R (1, 4) = 2 

 

Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0 < i < 1; i = 0; i 

< k ≤ J. 

 

 

j-i = 4 

W0,4 = 16 

C0,4 = 32 

R0,4 =2 

 

 

Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and 4. 

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16 
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)], 

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]} 

= 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 = 32 

R (0, 4) = 2 

 

From the table we see that C (0, 4) = 32 is the minimum cost of a binary search tree 

for (a1, a2, a3, a4). The root of the tree 'T04' is 'a2'. 
 

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the 

root of 'T24' is a3. 

 

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is 

'a1' 



 
 

 
  

 

    

 

The left and right sub trees for T24 are T22 and T34 respectively. The root of T24 is 'a3'. 

The root of T22 is null      The root of T34 is a4. 

 
 

 

 

 

 

Example 2: Consider four elements a1, a2, a3 and a4 with Q0 = 1/8, Q1 = 3/16, Q2 = Q3 = Q4 = 1/16 

and p1 = 1/4, p2 = 1/8, p3 = p4 =1/16. Construct an optimal binary search tree. 

 

 

STRING EDITING 

The minimum number of “character edit operations” needed to turn one sequence into the other is 

known as String Edit Distance. 

Consider the strings X= Amdrewz, Y= Andrew 

To convert X to Y 

1. substitute m to n  

2. delete the z  

 Therefore Distance = 2 

Given strings s and t 

Distance is the shortest sequence of edit commands that transform s to t, (or equivalently s to t). 

➢ Simple set of operations:  

➢ Copy character from s over to t (cost 0)  

➢ Delete a character in s (cost 1) 

➢ Insert a character in t (cost 1) 

➢  Replace one character for another (cost 1) 

This is called to be “Levenshtein distance” 

 

 

 

if  

  

 



Algorithm stringEdit()  

{ 

for(i=0; i<len(str1)+1; i++)  

{ 

for (i=0; i<len(str1)+1; i ++)   

{ 

if(i==0 && j==0) 

T[i][j] = 0; 

elseif (i==0) 

 T[i][j] = T[i][j-1] + 1 

elseif (j==0) 

 T[i][j] = T[i-1][j] + 1 

else { 

 T[i][j] = 1+ min { T[i][j-1], T[i-1][j-1], T[i-1][j]  

         } 

            }  //end inner for 

     }  //end outer for 

} // End Algo 

Example 

Edit the string Sunday to Saturday 

 Null S A T U R D A Y 

Null          

S          

U          

N          

D          

A          

Y          

 

 

 

String Edit distance = 3 

1. Insert ‘A’ 2. Insert ‘T’ and  3. Replace ‘N’ with ‘R’ 

Remaining Letters ‘S’, ‘U’, ‘D’, ‘A’, ‘Y’ are copied  



0/1 Knapsack 

In 0/1 Knapsack Problem, 

As the name suggests, We have to either take an item completely or leave it 
completely. We cannot take the fraction of any item. It is solved using dynamic 
programming approach. 

 

Example 

 Let say there are 2 objects and Knapsack with weight M = 20 

 Object 1 Object 2 

Weight 15 20 

Profit 10 8 

Here the weight of objects together is 35, whereas given knapsack weight is 20. 

As object1 gives highest profit consider Object 1 into the knapsack, then knapsack size will 

be reduced to 20-15 = 5. The available space of  knapsack is now 5. 

The weight of second object is 20, which is greater than the available space 5. so we can not 

place second object into knapsack we have to leave it. 

The total profit = 10 only 

Note : If the above problem is fractional knapsack unlike 0/1 knapsack, we can consider the 

fractional part of the second object which is 5/20 =0.25 which gives total profit of 10 + 

0.25(8) = 12. 

 

0/1 Knapsack Problem Using Dynamic Programming 

Knapsack weight capacity = w 

Number of objects = n 

Draw a table say ‘T’ with (n+1) number of rows and (w+1) number of columns. 

Fill the Table of 0th row and 0th column with zeroes as shown 

 0 1 2 ……… W 

0 0 0 0 0 0 

1 0     

2 0     

… 0     

N 0     

  



Here objects weights are represented row wise by wi where i runs from 1 to n  

Like  W2 represents weight of object2  

 W3 represents weight of object3 

 Wn represents weight of object last object N  

 

1      

2      

…      

N      

 

    

Knapsack weight is represented column wise as Wsum, Wsum runs from 1 to 

W(Kanpsack weight )  

 

1 2 ……… W 

    

 

Now fill the table row by row from left to right based the below conditions. 

 

If (Wi > Wsum)    ------> EQ1 

 T[i][Wsum] = T[i-1][Wsum] 

 

elseif ( Wi<= Wsum)    ------> EQ2 

T[i][Wsum] = Max  {   

T[i-1][Wsum] ,      

P[i]  +  T[i-1][Wsum - Wi]  

       } 

Note – Pi represents the profit of the object i 

 

Example  

Solve the below 0/1 Knapsack problem 

Weight of objects Wi = {2, 3, 5, 4}  



Profits of objects Pi = {3, 4, 6, 5}  

Knapsack capacity W = 5  

Solution : 

 Sort the Objects in ascending order w.r.t weights 

 Draw Table of size  -- (no of objects + 1)  * (Knapsack size + 1)  

 Fill first row as well as first column with zeros   

 

 

 

 

Object Profit Weight 0 1 2 3 4 5 

0 0 0 0 0 0 0 0 0 

1 3 2 0      

2 4 3 0      

3 5 4 0      

4 6 5 0      

 

Now find the values for each cell 

First Object W1 = 2, and i =1 

Wsum = 1,   

here W1 > Wsum so according to EQ1 copy the profit value from above cell 

T[i][Wsum] = T[i-1][Wsum] = T[0][1] = 0 

 

Wsum = 2 

here W1 <= Wsum so according to EQ2  

T[i][Wsum]  = Max { T[i-1][Wsum],  P[i] + T[i-1][Wsum-Wi] } 

  = Max { T[0][2] , 2 + T[0][2-2] } 

  = Max {0 , 2+ 0} 

  = 2 

Similarly when Wsum = 3, 4 and 5  



T[1][Wsum] = 2 

 

Second Object W2 = 3 and i =2 

Wsum = 1,   

here W2 > Wsum so according to EQ1 copy the profit value from above cell 

T[i][Wsum] = T[i-1][Wsum] = T[1][1] = 0 

 

Wsum = 2, 

W2 > Wsum,  

T[i][Wsum] = T[i-1][Wsum] = T[1][2] = 3 

Wsum = 3, 

W3 <= Wsum,  

T[i][Wsum]   = Max { T[i-1][Wsum],  P[i] + T[i-1][Wsum-Wi] } 

  = Max { T[1][3] , 4 + T[1][3-3] } 

  = Max {3 , 4+ 0} 

  = 4 

Wsum = 4, 

W3 <= Wsum,  

T[i][Wsum]   = Max { T[i-1][Wsum],  P[i] + T[i-1][Wsum-Wi] } 

  = Max { T[1][4] , 4 + T[1][4-3] } 

  = Max {3 , 4+ 0} 

    = 4 

Wsum = 3, 

W3 <= Wsum,  

T[i][Wsum]  = Max { T[i-1][Wsum],  P[i] + T[i-1][Wsum-Wi] } 

  = Max { T[1][5] , 4 + T[1][5-3] } 

  = Max {3 , 4+ 3} 

    = 7 

 



Similarly calculate values for all the cells  

 

Object Profit Weight 0 1 2 3 4 5 

0 0 0 0 0 0 0 0 0 

1 3 2 0 0 3 3 3 3 

2 4 3 0 0 3 4 4 7 

3 5 4 0 0 3 4 5 7 

4 6 5 0 0 3 4 5 7 

 

Objects included = O1 and O2 

So profits = 3 + 4 =7 

 

Reliability Design 

Reliability Design aims to build a system with high reliability, Where the devices are 

connected in series. 

  

     N Devices connected in Series 

In the above figure only one copy of each device is used to define the system. If any 

one the devices fail the entire system will fail. In this system the reliability and cost of 

system both are less. 

The Reliability of the system can be increased by increasing the no of copies of each 

device. For example, in case one copy fails the other copies of same device can used that 

leads to improved reliability of the system as shown below 

 

D1 DN D3 D2 ………………. 

D1 

D1 

D1 

DN 

DN 

DN 

D3 

D3 

D3 

D2 

D2 

D2 

   ………………. 

          Stage 1      Stage 2           Stage 3   Stage n 



So, if we duplicate the devices at each stage then the reliability of the system can be 

increased. 

It can be said that multiple copies of the same device type are connected in 

parallel through the use of switching circuits. Here, switching circuit determines which 

devices in any given group are functioning properly. Then they make use of such 

devices at each stage, that result is increase in reliability at each stage. If at each stage, 

there are mi similar types of devices Di, then the probability that all mi have a 

malfunction is (1 - ri)^mi, which is very less, and the reliability of the 

stage i becomes (1 – (1 - ri) ^mi).  

Thus, if ri = 0.99 and mi = 2, then the stage reliability becomes  

   1 – ( 1 – 0.99 )2 = 0.9999  

which is almost equal to 1. Which is much better than that of the previous case. 

In reliability design, we try to use device duplication to maximize reliability. But this 

maximization should be considered along with the cost. 

Let c is the maximum allowable cost and ci be the cost of each unit of device i. Then 

the maximization problem can be given as follows: 

Maximize π Øi (mi) for 1 <= I <= n      Subject to ∑ 𝒄𝒊𝒎𝒊
𝒏
𝒊=𝟏  < = C 

Dominance Rule : Consider two set of pairs (R1, C1) and (R2, C2) 

If R1 > R2 and C1 < C2 then we can discard the pair having less reliability and high cost 

Example – (R1,C1) = (0.9, 20)  and (R2, C2) = (0.5, 60) 

 Here 0.9  > 0.5    and   20 < 60   so discard the pair (0.5, 60) 

 

Example 

we need to design 3 stage systems with devices D1, D2, and D3 and costs of 
devices are $30, $15, and $20, respectively. The cost of this system is to be 
no more than $105. The reliability of each device type is 0.9, 0.8, and 0.5. 
Find the optimal reliability for the entire system in given cost. 

 Cost  Reliability 

D1 30 0.9 

D2 15 0.8 

D3 20 0.5 



Solution :  

 

 Given allowable cost C = 105, 

  

 Let UBi be the upper bound(Maximum) no of copies for Device i 

   

  𝑼𝑩𝒊 =  
𝑪−∑ 𝑪𝒋

𝒏

𝒋=𝟏

𝑪𝒊
 + 1 

 

 ∑ 𝐶𝑗

𝑛

𝑗=1
    = The cost for one copy of each device = C1 + C2 + C3 

   = 30 + 15 + 20 

   = 65 

             C  -  ∑ 𝐶𝑗

𝑛

𝑗=1
  = 105 – 65 = 40 

Maximum number of additional D1 devices we can purchase 

= 40/30 + 1 = 2 

Maximum number of additional D2 devices we can purchase 

  = 40/15 + 1 = 3 

Maximum number of additional D3 devices we can purchase 

  = 40/20 + 1 = 3 

 Cost  Reliability UBi 

D1 30 0.9 2 

D2 15 0.8 3 

D3 20 0.5 3 

 

No of Devices D1 can be purchased = 2 

No of Copies Reliability Cost  

D1 – 1 copy 0.9 30 (0.9,30) 

D1 – 2 copies 0.99 60 (0.99,60) 

 

 



D1 – 2 copies reliability = 1 – (1 – 0.9) 2 

    = 0.99 

D1 – 2 copies cost    = 30 + 30 = 60   

 

No of Devices D2 can be purchased = 3 

No of Copies Reliability Cost  

D2 – 1 copy 0.8 15 (0.9,15) 

D2 – 2 copies 0.96 30 (0.96,30) 

D2 – 3 copies 0.992 45 (0.992,45) 

D2 – 2 copies reliability = 1 – (1 – 0.8) 2 

    = 0.96 

D2 – 2 copies cost    = 15 + 15 = 30  

 

D2 – 3 copies reliability = 1 – (1 – 0.8) 3 

    = 0.992 

D2 – 3 copies cost    = 15 + 15 + 15 = 45  

 

No of Devices D3 can be purchased = 3 

No of Copies Reliability Cost  

D2 – 1 copy 0.5 20 (0.5,20) 

D2 – 2 copies 0.75 40 (0.75,40) 

D2 – 3 copies 0.875 60 (0.875,60) 

D2 – 2 copies reliability = 1 – (1 – 0.8) 2 

    = 0.96 

D2 – 2 copies cost    = 15 + 15 = 30  

 

D2 – 3 copies reliability = 1 – (1 – 0.8) 3 

    = 0.992 

D2 – 3 copies cost    = 15 + 15 + 15 = 45  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 


